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An effective method of constructing a solution of the eigenvalue and eigenfunction problem for an essentially non-uniform 
oscillatory system with variable distributed parameters is developed. The proposed approach is based on a combination of 
a variational approach, the theory of boundary-value problems and perturbation methods. An original determination of the 
small parameter of the problem is given and a recurrence algorithm for the successive refinement of the eigenvalues and 
eigenfunctions is proposed, which leads to accelerated (quadratic) convergence of the Newton’s “method of tangents” type. 
A commentary is made on the method and is illustrated by the solution of model examples. Q 1997 Elsevier Science Ltd. 
All rights reserved. 

1. FORMULATION OF THE PROBLEM 

Consider the natural oscillations of a non-uniform system with distributed parameters (a string, a spindle 
or a beam). We will assume that the condition for elastic clamping is satisfied at its boundary (at the 
ends). Using the method of separation of variables, we arrive at the third eigenvalue and eigenfunction 
boundary-value problem of the form [l-4] 

@(x)u’)’ + [b(x) - q(x)]u = 0.0 c x c 1 
(1.1) 

a0p(0>u’(0) - &p(O) = 0, ao, po 3 0, 010 + PO ’ 0 

a,p(l)u’(l)+~,u(l)=O, aI, fit 30, al+P1 >O 

Here u = u(x) is a coordinate function characterizing the form, in particular, the linear or angular 
displacement, of the sectionx,x is the argument (the Euler variablej, 0 6 x c 1, the parameter h is the 
constant of the separation of the spatial and time variables h = o 3 0, and o is the frequency. The 
coefficientsp(x) and r(x) have the meaning of the distributed stiffness and linear density, respectively; 
it is assumed that they are bounded and strictly positive. The non-negative function Q(x) is the elasticity 
coefficient of the external medium (in particular, when q = 0 there is no medium). The functionsp, r 
and q are assumed to be fairly smooth (see below). 

Note that the Sturm-Liouville problem (1.1) with boundary conditions of the third kind is written 
in dimensionless variables. We take as the unit of length the extension of the system (the string, elastic 
spindle or beam, etc.), and we take as the units of the stiffness, density, elasticity coefficients, etc. their 
characteristic values (the average or extremal values). 

For the self-conjugate boundary-value problem (1.1) it is required to determine the system of 
eigenvalues I&,) and eigenfunctions {u,(x)> (n = 1, 2, . . .). From the applied point of view, a highly 
accurate calculation of the lower frequencies wl, ~2, . . . and forms ul(x), U&C), . . . of the oscillations, 
which govern the system performance, it is extremely important ([l-5], etc.). To determine the higher 
frequencies %, n s 1 and the corresponding forms u,(x) we can use asymptotic methods [3,4,6]. The 
problem of finding the first natural frequencies and forms leads to fundamental analytic and 
computational difficulties in the case of systems that are essentially non-uniform, when the coefficients 
p(x), r(x) and q(x) vary considerably for 0 G x < 1, see, for example, Section 5.2. Note that the form of 
Eq. (1.1) can be simplified using various substitutions [3, 71. 
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An enormous literature is devoted to investigating the eigenvalue and eigenfunction problem (1.1) (see, in 
particular, the monographs and textbooks [l-lo] and the bibliography in them). Numerous analytic and numerical 
methods of SoIving it have been developed. However, these investigations are mainly devoted to the case of boundary 
conditions of the tirst kind (o,, = al = 0). The case of conditions of the second kind (p0 = fIi = 0) have been much 
less investigated. The general situation of boundary conditions of the third kind has not been investigated very 
thoroughly. Using the variational approach, we intend to develop an effective numerical-analytic method of 
determining the lower frequencies and forms of oscillations of a system with essentially non-uniform (variable with 
respect tox) parametersp, r, and q. The proposed algorithm for sohring the problem touches on the investigations 
made in [ll, 121 in which the case of boundary conditions of the first and second kinds were considered. 

. 

2. THE VARIATIONAL APPROACH TO THE SOLUTION 
OF THE PROBLEM 

Problem (1.1) can be represented in the equivalent variational form [3,4,9, lo] 

min Au1 = h, 4~1 = i[p(x)d2 + q(x)u2]dx - p(xJdt.4 ' 
0 0 

I[!41 =Ilul12 = jr(x)u2dr = 1, [a,,,p(x)u’~p,,,u],~,,, = 0 
0 

(2.1) 

Relations (1.1) are the necessary and sufficient conditions for the functional.+] (2.1) to have a mini- 
mum for the isoperimetric normalization condition with weight r(x): flu] = 11 u 112 = 1 and boundary 
conditions of the third kind. The absolute minimum of the functional is the first eigenvalue hi, while 
the function u(x, Ai), on which it is reached, is the first eigenfunction ui(x) of the problem. Subsequent 
eigenvalues &, n 3 2 are determined recurrently in narrower classes of functions, which satisfy additional 
conditions of orthogonality with weight r(x) to the previous eigenfunctions ul, . . . , u,,-~ 

I,[u]=~r(x)u~(x)udr=(u~,u)=o, k=l,...,n-I 
0 

(2.2) 

The solution of variational problem (2.1), (2.2) leads to a system of eigenvalues {b,) and ortho- 
normalized functions {u,(x)}. The solution of the Sturm-Liouville problem (1.1) defines the 
eigenfunctions (apart from arbitrary factors, which can be chosen from the normalization condition 
with weight r(x)). 

Suppose h, u(x, h) is a certain solution of problem (1.1). Multiplying Eq. (1.1) by u(x, h) and integrating 
in the interval 0 G x G 1, we obtain h = J[uy-$1 (taking the boundary conditions into account). This 
relation is used in the Rayleigh principle [3-5, S-121 to construct an upper limit of the first eigenvalue 
hi using a certain test function v(x), which satisfies the boundary conditions (1.1) 

0 c h, s $ = JWWI-2 v ~~o,,~~~>~‘~~~~Po,~~~~~l~~o,, = 0 (2.3) 

The accuracy of the limit 1: (2.3) depends on the successful choice of the test function v(x) and will 
usually be fairly high if the properties of the functionsp(x), r(x) and q(x) are taken into account intuitively 
(see the solution of the examples below in Section 5). The equality h*, = hi is obtained if and only if 
y(x) = Cul(x), where C = const. Note that in the estimate (2.3) the property of the normalizability of 
the function v(x) is unnecessary. 

Using the Rayleigh-Ritz method 53-101, justified in [8], we can obtain as high an accuracy of the 
limit h*, and the subsequent limits h2, h;, . . . as desired. However, this approach involves extremely 
time-consuming and unstable calculations. In specific calculations, to confirm the acceptable accuracy 
it is necessary to construct analogous lower limits LO (n = 1,2,3, . . .). The construction of the lower 
limits involves considerable theoretical and computational difficulties [9, lo]. It is of considerable 
practical importance to find these limits. 
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3. THE USE OF THE PERTURBATION METHOD 

To fix our ideas, we will now consider the problem of obtaining the first eigenvalue h and eigenfunction 
u(x). The number n = 1 is omitted for brevity; this does not lead to any misunderstandings. We will 
assume that there is an approximate value h” of the first eigenvalue, in particular ho = h* (the upper 
limit), that is sufficiently accurate for the perturbation method to be applicable. As a measure of closeness 
we will take the value of the parameter E, defined for each h” by the following procedure 

&=I-<, lal4, ~=minargE(x,X)>O 
I 

(p(x)u ‘)‘+ [Xr(x) -q(x)Jv = 0, 0 < x 6 5 

1) u (0) = aoa, u ‘(0) = poalp(0) (a = 1) 

2) u (O)=a,p(O)b, u’(O)=p,b (b=l) 

(3-l) 

where arg, E denotes the root x of the equation E = 0. 
According to (3.1) it is required to solve the Cauchy problem for one of the equivalent forms of 

conditions 1 and 2 for x = 0, which are appropriate both when oze = 0 (PO > 0) and when go = 0 
(as > 0). In case 1 v(0) is specified, and v’(O) is calculated using (1.1) and (3.1); in case 2, the opposite 
is the case; the function v will contain parameter a or parameter b, respectively, as a factor, which can 
be equated to unity. The quantity E”(x) represents the boundary condition in the region of the right 
endx = 1. Note that E”(1) = 0 only when 3L” = h, and E + 0 if ho -+ h. Moreover, we have the estimates 
Ih-h”I~DIEI,I&I~dIh-h’I,whereO<D,d< 00. This property is used for the assumed measure 
of closeness of h and h”. 

In relations (3.1) we have assumed the continuability of the functionsp(x), r(x) and q(x) in the interval 
1 4 x < 5 when 5 > 1. Further, this continuation is assumed to be fairly smooth. Note that when 
q(x) = 0 (there is no external elastic medium) the quantity 5 < 1 if ho = 3L* > h [3, 7, 11, 121. The 
solution of problem (3.1) will henceforth be assumed known: v = v(x, 3L”), 6 = c(h“). 

The smallness of the value of the parameter E, defined by (3.1), can be achieved using the Rayleigh- 
Ritz method [8]. Computational practice shows that, to satisfy the conditions of perturbation theory it 
is usually sufficient to have I E I - 10-1-10-2 (see Section 5). As a rule, this estimate is obtained using 
Rayleigh’s principle (2.3). 

Thus, suppose the parameter E is sufficiently small; we carry out identical transformations of the 
boundary-value problem (1.1) by replacing the argument, function and parameter 

y = xc, 0 d y s 5, U(y,c) = u(x), A = c-*x 

(p(y(1-&)-‘)Lr’)‘+[hr(y(1-&)-‘)-(1-&)-~q(y(1-&)-‘)]U=0 

a,p(O)(l - E)IY(O,E) - @or/(O, E) = 0 

a,p(S + EM - W’(S, E) + P,Wk E) = 0 

(3.2) 

Relations (3.2) are considered as a perturbed problem in the eigenvalues A and eigenfunctions U 
for values ofy in the range 0 6 y G 5. We will take as the unperturbed (generating) problem the equation 
and boundary conditions for E = 0 

(p(yY&)‘+ [Aor - qbWo = 0, 0 d Y d 5 
aop(W30) - BoUoCO> = 0 (3.3) 
w.GWS)+ WoCS> = 0 

i.e. boundary-value problem (1.1) in the interval 0 G y G 5. 
The solution of the Sturm-Liouville problem (3.3) Aso, U e is known; it is identical with the solution 

of the Cauchy problem constructed using (3.1), namely 

h,=X, U,(y)=u(y,X)), 0ayaS (3.4) 
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For the initial perturbed problem (3.2), we will construct the required solution in the form of the 
representation 

h(&)=h” +a, +E2..., U(y,&)=u (y,X)+eU, +E2... (3.5) 

The unknowns Al, U1 satisfy the inhomogeneous boundary-value problem, which is obtained after 
substituting (3.5) into (3.2) and equating coefficients of the first power of e 

(P(Y)LI;)‘+[h”r(Y)-q(Y)l~~ =-A,Q)U,(y)- 

-(YP’(Y)~~(Y))‘-h”Yr’(Y)~o(Y)+2q(Y)~,(y)+yq’(y)uo(y) 

~oPw&w)- P& (0) = P&CO> 

w(WW+ PM5> = -alp’<S>~~(5)-Bluo(S) 

(3.6) 

To determine the unknowns A1, U,(y) we will use the property of self-conjugacy of the corresponding 
homogeneous problem (the Fredholm alternative). We multiply the equation for U1 (3.6) by U. and 
integrate with respect toy in the interval 0 my G 5. As a result of integration by parts, terms containing 
U1 vanish. The coefficient of U1 on the left-hand side of the relation is identically equal to zero, when 
boundary conditions (3.6) are taken into account. A linear equation for A1 is obtained, by solving which 
we find the required value in terms of known quantities 

A, =llUo11-2 1 yp’(y)r/~2(y)dy+llLloll-2 5 [-h”yr’(y)+ 
0 0 

(3.7) 

When calculating A, U to a first approximation in E (with an error of 0(c2)) we can assume that 
5 = 1 in (3.7) without any reduction in accuracy with respect to powers of E. Hence, the continuability 
of the functions p, T and q may only be required to solve problem (3.1). 

Following the definition of A (3.2) and its representation in the form of expansion (39, we obtain 
h” = h*, so that the quantity h* will be a lower limit for h when a certain inequality in &A1 is satisfied, 
i.e. 

O<h, =t2h* CA, &A, >0 (3.8) 

The quantity I E I is assumed to be fairly small. It follows from (3.8) that the simultaneous satisfaction 
of the inequalities &h*) > 1 (i.e. E < 0) and EAT > 0 (i.e. A1 c 0) is impossible. The sign of the number 
E is defined by (3.1), and the sign of the coefficient A1 is found using (3.7). In particular, it can be 
established without integration that A1 > 0 whenp’b) 2 0, f(y) 6 0 and q’(y) 2 0,O G y G 1. It should 
be noted that the terms outside the integrals in (3.7) are equal to zero when a,,1 = 0 or po,l = 0. 

Thus, suppose the coefficient A1 is calculated from (3.7); the function U,(v) can then be constructed 
as the solution of problem (3.6) using the method of variation of the integration constants. For this 
purpose a general solution of the homogeneous equation is obtained which is found by means of 
Liouville’s formula [7]. Then, in the same way as above, the subsequent coefficients A2, U2, . . . of 
expansions (3.5) are found. One can also use the method of successive approximations in powers of E 
of the Picard-method type. However, this approach is extremely time consuming and unproductive. 
Below we develop an effective economic method of accelerated convergence, which leads to simple 
uniform computer calculations: integration of the Cauchy problem and determination of the root. Note 
also that in practical situations it is often sufficient to calculate the first approximation using (3.5) and 
(3.7) when constructing bilateral estimates of the type (2.3) and (3.8). The main results obtained and 
the assertions made also hold for the subsequent eigenvalues, since the specific features of the first 
eigenvalue are not used. 
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4. THE METHOD OF ACCELERATED CONVERGENCE 

The cumbersome expression for A1 (3.7), which contains quadratures of functions usually determined 
numerically as a result of integrating the Cauchy problem (3.1), can be simplified considerably. We will 
integrate them by parts, dispensing with the derivatives p’, I’ and q’. After fairly lengthy elementaty 
calculations, taking Eqs (3.1) and (3.3) into account for U0 = v, we obtain the following final expression 
for h with an error of 0(s2) 

h = ~O+E~+E’..., P = Cl@” I= -5pwo’2<5> - [A” G> - s<5>lbv3 

Vo(x) = u,(x)llu,ll-’ 
(4.1) 

Here V&) is the function U&x) = v(x, &-,), normalized with weight r(x) in the interval 0 s x s 5. 
Again we note that without loss of accuracy with respect to powers of E (in the first approximation in 
E) the quantity 5 in u can be put equal to unity (5 = l), i.e. continuation of the functionsp, r and q and 
of the solution v and v’ is not required (when 5 > 1). The norm of the function U,(x) is also related to 
the taking of a quadrature of the function v(x, A“), determined by numerical integration in accordance 
with (3.1). This operation can be replaced by the procedure of simultaneous integration of the Cauchy 
problem for the variable v and its derivative h = &/ah 

(p(x)h’)‘+[hOr(x)-q(x)]h =-r(x)u, h(O)=h’(O)=O (4.2) 
II~,II~=I~LJI~*=[~‘(~, h’)h(E,, X0)-u<& h’)h’& h”)lp(6) 

Formula (4.1) for p can be considerably simplified if the boundary conditions are of the first or second 
kind [ll, 121. Then only one term remains (the first or the second). Hence, we have obtained a compact 
expression that is simple from the computational point of view for the refined eigenvalue h (with 
an error O(s2)): 13L - h(l) 1 G CE*, where h (l) = ho + up, while the constant C in the range of values of 
E can be effectively estimated in terms of the coefficientsp, r and q. 

We will again use relations (3.1) and (4.1) (and (4.2)) to construct a more accurate value of h 
based on the h(l) obtained and considered as the initial approximation (similar to ho). We substitute 
h(l) into Eq. (3.1) instead of ho, integrate the Cauchy problem (with conditions 1 or 2) vtl) = v(x, h(l)) 
and determine the root c(r) of the equation E(x, h(l)) = 0, closest to the valuex = 1. As a consequence 
of the mentioned simplicity of the root, for the parameter E(~) and the solutions vcl), v;r) we have the 
estimates 

IE (1) IS dlh-ti’k dcE* , Iv -u(,,IS KiEc,,l, IV’-U;,,ls KlE(,,l 

We will use (4.1) and (4.2) to obtain the refined value of h 

ti2’ = h”’ +Et,,/.l(h”‘), lk-h’*‘lC CE;,, d dZC3E4 (4.4) 

The process of refining 5, E, v, v’ and h is then repeated. The following recurrence relations are obtained 

ti’+l) = h”’ + Ect,j.l(tik’), lh- h”+“lS CE;,, 

E(k) = 1 - 6~ tcr, = min argE(x, tik)) > 0 
x 

E(x, tik)) = a,p(x)u ‘(4 tik)) + &J (x, P) (4.5) 

lE+ dlh-h”‘lS dcE* _ ct Ijr Iu -u(,+d KIE& Iu’-u~~~~s KIE~,,I 

It follows from (4.5) (see, in particular, (4.3) and (4.4)), that the rate of convergence of the iterations 
is extremely high. It has a quadratic order in E (similar to Newton’s method of tangents) 

lE+ (dC)-‘(tic) e(k) , 0(k) = 2', k=O, 1, 2, . . . (4.6) 
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It follows from (4.6) that a few iterations (usually two or three) lead to highly accurate estimates of 
h and u. The recurrent refinement procedure (4.5) can be employed to obtain successive eigenvalues 
&, and eigenfunctions u,(x), n z 2. It is attractive from the point of view of simplicity of realization, 
economy and high accuracy, and can easily be realized using modern personal computers. 

We will consider once again the informal procedure of choosing the test function v(x) or the system 
{~&z)> and constructing the initial estimate h”. If the quantity I E 1, more accurately I E ]dC, is “not very 
small”, then, at the preliminary stage, one can use the well-developed “shooting” methods or the small- 
coordinate approximation by the Rayleigh-Ritz method. In practice, the functionsp, r and q also often 
depend on the scalar or vector parameter ‘y, y E F and it is required to construct families of eigtnvalues 
and eigenfunctions. Suppose, for a certain value of y = 1p E r a highly accurate (in particular, an extract) 
solution of the Sturm-Liouville problem is known: h = J.(f), u = z.& 1’). Then, these quantities can 
be taken as the initial approximations for other fairly close discrete values of 3 E (~1, where (~1 is a 
fairly dense set {# E F. This method of continuation with respect to the parameter can also be realized 
by the artificial introduction of the parameter y, 0 G y 
Y) and q(x) by Q(x, Y), where &, 01, R(x, O), Q(x, 0) 

G 1, i.e. by replacing&) by P(x, y), T(X) by R(x, 
are “simple functions” (for example, constants), 

while P(x, 1) = p(x), R(x, 1) = r(x), Q(x, 1) = q(x). In particular, we can put 

P(xr Y)=Po+Y(P(x)-Po)~ N-G Y)=%+Y(r(x)-%) 

Q(x, r)=qo+y(q(x)-qo). PO. r,>O. 4020 

where po, ro, qo are certain characteristic values of the functions p(x), r(x) and q(x) for 0 G x 6 1, for 
example, their average or extremal values. The parameters y can take discrete values g = j/N (j = 0, 
1, 2, . . . , N), where N must be taken to be fairly large, as established by numerical experiment. 

5. CALCULATION OF MODEL EXAMPLES 
In order to illustrate the effectiveness of the above method and to comment on the formulae and analytic 

expressions obtained, we will consider some examples. 

5.1. A system with constunr coeficie~ts. In this special case, by dividing byp > 0 and redesignating the other 
parameters, problem (1.1) can be converted to the form 

u”+luc=O, aou’(0)-~ou(O)=O, alu’(l)+~,u(l)=O (5.1) 

Suppose the coefficient p0 or (and) pi is not equal to zero; to tix our ideas we will take PO > 0. Then, the eigenvalues 
& and the functions u,(n), n 2 1 of problem (5.1) are given by the relations 

)/z u,(X)=a(sinv,x+(ao I~o)cosv,x), v, =h, , a=const 

A,, = Ap[(fh-$~ - haocq )sinhK +(ao& +Boar )A% costs] 
(54 

where Argk denotes the set of positive roots of h. 
The quantities A,, can be found numerically. The characteristic equation for determining the positive eigenvalues 

& (5.2) can be reduced to a form which is more usual and convenient for analysis 

tgv = v(ao& +~oal)(v2aoa, -pop, )-I, v* = A (5.3) 

It can be established by direct differentiation with respect to v of relation (5.3) that the roots v,, are simple for 
all values of the parameters u+~, &,i, which satisfy conditions of the type (1.1). 

We will now calculate the implicit derivative a?+& starting from (5.3). To avoid cumbersome calculations we 
will consider the simpler case when a,, = 0, i.e. the clamping of the left end is absolutely rigid, while the clamping 
of the right end is elastic. We obtain the expression 

aan / ag = -2(a$t + p& )[(a! + g&p, +a& 1-l < 0 (5.4) 

We will now use (4.1), according to which this derivative is determined by the coefficient p, i.e. 

aa, lag =~~(h,(5))=-~d*(52-a,vo(5) (5.5) 

Direct calculation of the value of the function U,&) = v(x, A.,J = sin vg, its derivative and the square of the 
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norm 11 UnO 11’ and substitution into the expression for p shows that the values of (5.4) and (5.5) are identical. This 
provides a check that the main formula (4.1) holds in the special case of a homogeneous system with an elastically 
clamped right end. Note that for boundary conditions of the first or second kind (at the left or/and right ends) the 
value of the derivative is the same and equal to &,/a~ = -2&l& 

5.2. A calculation for an essentially inhomogeneous system. We will consider the specific numerical example of 
determining the first eigenvalue for a problem of the form 

u”+k(l-O.gsinxx)-‘u=O, u(O)=O, u’(l)+2u(l)=O (5.6) 

Here the coefficient r(x), see (l.l), is changed by a factor of 10, i.e. we are investigating a system with strongly 
varying parameters (the linear density). The equivalent variational problem has the form (2.1) 

1 
J[u] = j u”dx + 2u2 (1) + min 

0 

(5.7) 

I[u]=J. (l-O.gsinnx)-‘u2dx=1 
0 

with boundary conditions (5.6) on u. For the initial estimate of h we will use the Rayleigh principle and we will 
take w = sin QX as the test function v(x), where q is the first root of the equation q + 2 tg q = 0, i.e. v(x) will be 
sought in a form corresponding to the constant function r(x). The boundary condition of the first kind at the left 
end is satisfied automatically, while the boundary condition of the third kind at the right end will be satisfied when 
q = 2.28893 (to five significant decimal places). A calculation of the upper limit using (2.3) leads to a value a* = 
1.12451. Further, by integrating the Cauchy problem according to (3.1) with v(0) = 0, v’(0) = 1, we obtain the 
required value of the root 5 = 0.93321 of the function E(x, h*) = v’(x, h*) + 2v(x, h*). As a result we obtain a 
value of the parameter E = 6.679 x lo-‘, which is sufficiently small for the perturbation method, and the method 
of accelerated convergence to be applicable. The refined eigenvalue given by (4.1) again leads to the upper limit 
h(l) = 1.07907 and to the corresponding root $I) = 0.99170 and the parameter E(lj = 8.30 x 10m3. Hence, by the 
first inequality of (4.3) we have dC = 1.8, i.e. quadratic convergence of process (4.5) of the type (4.6) with parameter 
FXZ’C = 0.12. The following iterations lead to values of the eigenvalue k (‘) = 10739955, the root 5c2j = 0.9991044 
and EQ = 8.956 x lOA (to seven decimal places). Further calculations enable us to obtain hc3) = 1.0734555 and 
5~~) = d.9999726, i.e. E(~) = 2.74 x 10” and finally hc4) = 1.0734400. 

A check shows (see Section 3 and formula (3.8)), that the quantity $j1(3) is a lower limit; hence, the bilateral 
estimate h. = 5f3jh(3) = 1.073380 c X < 1.073440 holds. 

We will take as the highly accurate approximate value of h the arithmetic mean l/2@* + 1(“), which leads to a 
relative error of A?& = 2 x lo-“. Note that the reduction of the accuracy of the calculations compared with the 
theoretical value is due to rounding errors. 

We will now use the so-called two-coordinate approximation \y = c1 sin q,n + c2 sin q~ for the test function 
v(x) where Q = 2.28893 and q2 = 5.08699 are the first and second roots of the equation q + 2 tg q = 0, respectively. 
As in Section 2 we will calculate the integralsJ[v] andI[v&(5.7), . we obtain the problem of minimizing the quadratic 
form J(c) with the condition I(c) = 1, where c = (c,, c2) , while the functions J(c) and I(c) have the form 

~(c)=c~Ac, A=diag(a,,, a22), all = 3.18666, a22 = 13.80483 

I(c)=c’Bc, B=(bv), bu=bji, i, j=l, 2 (5.8) 

b,, =2.83381, b,2 = b,, =0.91900, b22 = 1.81257 

Using the method of Lagrange multipliers, we arrive at the solutions of secular quadratic equation in k: det (A 
- hB) = 0. The least root of the equation h* = 1.09432 is the upper limit of the first eigenvalue of problem (5.6). 
It is easy to see that it is more accurate than in the single-coordinate approximation of the test function V(X) 
considered earlier. The determination of the abscissa 5 and the parameter E using procedure (3.1) leads to the 
following values: 5 = 0.97028, E = 2.972 x 10m2. As might have been expected, the two-coordinate approximation 
gives a more accurate result with respect to E 

I 
by approximately a factor of two). We obtain as the first approxi- 

mation of perturbation method (4.1) and (4.3) h I) = 1.0754351, ~(~1 = 1 - 5~~1 = 3.0094 x 10”. Further, in a recurrent 
manner using (4.4) and (4.5) we obtain the following approximations: h(*) = 1.0736612, E(~) = 1 - t(2) = 
3.284 x lOA and finally, hc3) = 1.0734133. The third iteration led to practically the same accuracy as the fourth 
for the singld-coo;dinate approximation of w(x). The analogous three-coordinate representation of the test function 
leads to the same relative error MJA = 2 x lo-’ as the second iteration. We again note that the reduction of the 
accuracy of the calculations compared with the theoretical value is due to the limitations of the microcalculator. 

The results obtained above confirm that the proposed method of accelerated convergence is highly effective for 
the highly accurate solution of extremely complex eigenvalue and eigenfunction problems, without the need for 
expensive software. 
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